10月28日 陆帅✧:Linearized inverse Schrödinger potential problem with a large wave number

时间:2020-10-20浏览:194设置


讲座题目:Linearized inverse Schrödinger potential problem with a large wave number

主讲人:陆帅  教授

主持人:朱升峰  副教授

开始时间🏇🏻:2020-10-28 14:30:00   结束时间🔎:2020-10-28   15:30:00

讲座地址:腾讯会议  ID🖕🏼🦹🏼:225 847 143

主办单位🕺:数学科学学院

 

报告人简介🏊🏿‍♀️:

       陆帅👩🏼‍🎨🙇🏽‍♂️,复旦大学数学科学学院教授,主要从事数学物理反问题计算方法与数学理论的研究🧎,特别是反问题正则化方法收敛性分析及偏微分方程反问题稳定性理论等。至今在Inverse   ProblemsSIAM系列、Numer. Math.✍️、Math. Comp.等权威期刊共发表学术论文五十余篇⛪️,合作出版英文学术专著一本。2019年获得国家杰出青年科学基金资助🪁,现任《Inverse   Problems》的编委💇‍♂️。

 

报告内容:

We investigate recovery of the (Schrödinger)   potential function from many boundary measurements at a large wave number. By considering such a linearized form, we obtain a Hölder type stability which is a big improvement over a logarithmic stability in low wave numbers. Furthermore, we extend the discussion to the linearized inverse Schrödinger potential problem with attenuation, where an exponential dependence of the attenuation constant is traced in the stability estimate.

Based on the linearized problem, a   reconstruction algorithm is proposed aiming at the recovery of the Fourier   modes of the potential function. By choosing the large wave number  appropriately, we verify the efficiency of the proposed algorithm by several numerical  examples. It is a joint work with Victor Isakov (Wichita) and Boxi Xu (SUFE).

 


返回原图
/

 

光辉娱乐专业提供:光辉娱乐💁🏿、等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流🧘🏼,光辉娱乐欢迎您。 光辉娱乐官网xml地图
光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐 光辉娱乐